
scalaz-stream
Reactive in Reverse

• Push streams

• Data assertively pushed into your flow

• Naturally runs in parallel

Pull vs Push

• Push streams

• Data assertively pushed into your flow

• Naturally runs in parallel

• Pull streams

• "Turn the crank" from the end and request data

• Backpressure by definition

Pull vs Push

• Push streams

• Backpressure is something you need to design

• More intuitive control flow (imperatively)

Pull vs Push

• Push streams

• Backpressure is something you need to design

• More intuitive control flow (imperatively)

• Pull streams

• Concurrency doesn't exist

• More declarative control, which can be weird

Pull vs Push

Concepts

• Task[A]

• Like Future, but more controlled

• Process[Task, A]

• A strict sequence of actions

Concepts: Task
• Fully lazy

Concepts: Task
• Fully lazy

• Creating a Future executes immediately

Concepts: Task
• Fully lazy

• Creating a Future executes immediately

• No more memory leaks!

Concepts: Task
• Fully lazy

• Creating a Future executes immediately

• No more memory leaks!

• Easy to move tasks between thread pools

Concepts: Task
• Fully lazy

• Creating a Future executes immediately

• No more memory leaks!

• Easy to move tasks between thread pools

• Better thread utilization

Concepts: Task
• Fully lazy

• Creating a Future executes immediately

• No more memory leaks!

• Easy to move tasks between thread pools

• Better thread utilization

• Explicit parallelism

def fib(n: Int): Task[Int] = n match {
 case 0 | 1 => Task now 1
 case n => {
 for {
 x <- fib(n - 1)
 y <- fib(n - 2)
 } yield x + y
 }
}

fib(42).run

def fib(n: Int): Task[Int] = n match {
 case 0 | 1 => Task now 1
 case n => {
 val ND = Nondeterminism[Task]

 for {
 pair <- ND.both(fib(n - 1), fib(n - 2))
 (x, y) = pair
 } yield x + y
 }
}

fib(42).run

def shiftPool[A](task: Task[A]): Task[A] =
 Task({ task })(MyThreadPool).join

def shiftPool[A](task: Task[A]): Task[A] =
 Task.fork(task)(MyThreadPool)

def futureToTask[A](f: Future[A]): Task[A] = {
 Task async { cb =>
 f onComplete {
 case Success(v) => cb(\/.right(v))
 case Failure(e) => cb(\/.left(v))
 }
 }
}

def futureToTask[A](f: Future[A]): Task[A] = {
 Task async { cb =>
 f onComplete {
 case Success(v) => cb(\/.right(v))
 case Failure(e) => cb(\/.left(v))
 }
 }
}

Concepts: Process
• An ordered sequence of actions

• Ask for an action…then the next…then the next

• If you can't keep up, you ask less frequently

• Easy to merge (just ask for data from either "side")

• Explicit parallelism

def fetchUrl(num: Int): Task[String] = {
 val fetch: Task[Task[String]] = Task delay {
 val svc = url(s"http://api.stuff.com/record/$num")
 Task fork futureToTask(Http(svc OK as.String))
 }

 fetch.join
}

val nums: Process[Task, Int] = Process.range(0, 10)
val adjusted = nums map { _ * 2 } filter { _ < 10 }

val pages = adjusted flatMap { num =>
 Process.eval(fetchUrl(num))
}

val found = pages find { _ contains "Waldo!" }

val stuff: Task[Unit] = found to io.stdOutLines run

stuff.run

val nums1: Process[Task, Int] = Process.range(0, 10)
val nums2: Process[Task, Int] = Process.range(11, 20)

val nums: Process[Task, Int] = nums1 interleave nums2

...

val i = new AtomicInteger
val read = Task delay {
 i.getAndIncrement()
}

val src = Process.eval(read).repeat

val left = src map { i => s"left: $i" }
val right = src map { i => s"right: $i" }

left interleave right to io.stdOutLines

left: 0
right: 1
left: 2
right: 3
left: 4
right: 5
left: 6
right: 7
left: 8
right: 9
left: 10
right: 11
left: 12
right: 13
...

…

…

// bounded queues are for wimps...

val queue = new ArrayBlockingQueue[Message](10)

// looks like I'm a wimp

val read: Task[Message] = Task delay { queue.take() }

val src: Process[Task, Message] =
 Process.eval(read).repeat

...

// bounded queues are for wimps...

val queue = async.blockingQueue[Message](10)

val src: Process[Task, Message] = queue.dequeue
...

Sinks
• Data has to go somewhere

Sinks
• Data has to go somewhere

• Writing out to a channel

Sinks
• Data has to go somewhere

• Writing out to a channel

• Writing to disk

Sinks
• Data has to go somewhere

• Writing out to a channel

• Writing to disk

• …or all of the above

Sinks
• Data has to go somewhere

• Writing out to a channel

• Writing to disk

• …or all of the above

• What is a sink anyway?

Sinks
• Data has to go somewhere

• Writing out to a channel

• Writing to disk

• …or all of the above

• What is a sink anyway?

• A stream of functions!

type Sink[F[_], A] = Process[F, A => F[Unit]]

def write(str: String): Task[Unit] =
 Task delay { println(str) }

val sink: Sink[Task, String] = Process.constant(write _)
val src = Process.range(0, 10) map { _.toString }

val results = src zip sink flatMap {
 case (str, f) => Process eval f(str)
}

val universe: Task[Unit] = results.run

val stdOut: Sink[Task, String] = ...
val channel: Sink[Task, String] = ...

val src = Process.range(0, 10) map { _.toString }

val results = src zip stdOut zip channel flatMap {
 case ((str, f1), f2) => {
 for {
 _ <- Process eval f1(str)
 _ <- Process eval f2(str)
 } yield ()
 }
}

val universe: Task[Unit] = results.run

val stdOut: Sink[Task, String] = ...
val channel: Sink[Task, String] = ...

val src = Process.range(0, 10) map { _.toString }

val results = src observe stdOut to channel

val universe: Task[Unit] = results.run

def debug[A](stream: Process[Task, A]): Process[Task, A] =
 stream map { a => s"debug: $a" } observe io.stdOutLines

Concurrency

Concurrency
• Always explicit!

Concurrency
• Always explicit!

• Two forms of parallelism

• Racing two streams into one

• Turning a stream "sideways"

Concurrency
• Always explicit!

• Two forms of parallelism

• Racing two streams into one

• Turning a stream "sideways"

• Almost everything implemented on top of wye

wye

val left: Process[Task, Message] = ...
val right: Process[Task, Message] = ...

val merged: Process[Task, Message] =
 left.wye(right)(wye.merge)

val left: Process[Task, Message] = ...
val right: Process[Task, Message] = ...

val merged: Process[Task, Message] =
 left merge right // should be "race"

val left: Process[Task, Message] = ...
val right: Process[Task, Line] = ...

// oh NOES! teh symbols cometh!
val merged: Process[Task, Message \/ Line] =
 left either right

Useful wyes

• wye.merge

Useful wyes

• wye.merge

• wye.either

Useful wyes

• wye.merge

• wye.either

• wye.interrupt

Useful wyes

• wye.merge

• wye.either

• wye.interrupt

• wye.drainL / wye.drainR

Useful wyes

• wye.merge

• wye.either

• wye.interrupt

• wye.drainL / wye.drainR

• Doesn't work!

val nums: Process[Task, Int] = Process.range(0, 10)
val adjusted = nums map { _ * 2 } filter { _ < 10 }

val pages = adjusted flatMap { num =>
 Process.eval(fetchUrl(num))
}

val nums: Process[Task, Int] = Process.range(0, 10)
val adjusted = nums map { _ * 2 } filter { _ < 10 }

val pages: Process[Task, Task[String]] =
 adjusted map { num =>
 fetchUrl(num)
 }

val parallel: Process[Task, String] =
 pages.gather(4)

gather(n)

• Grabs chunks of n and parallelizes

gather(n)

• Grabs chunks of n and parallelizes

• Last chunk of stream may be truncated

gather(n)

• Grabs chunks of n and parallelizes

• Last chunk of stream may be truncated

• Great for finite streams!

gather(n)

• Grabs chunks of n and parallelizes

• Last chunk of stream may be truncated

• Great for finite streams!

• Causes DEADLOCK on infinite streams

gather(n)

• Grabs chunks of n and parallelizes

• Last chunk of stream may be truncated

• Great for finite streams!

• Causes DEADLOCK on infinite streams

• Don't use if you source from a queue!

val nums: Process[Task, Int] = Process.range(0, 10)
val adjusted = nums map { _ * 2 } filter { _ < 10 }

val pages: Process[Task, Process[Task, String]] =
 adjusted map { num =>
 Process.eval(fetchUrl(num))
 }

val parallel: Process[Task, String] =
 merge.mergeN(pages)

merge.mergeN
• A little weirder to use…

merge.mergeN
• A little weirder to use…

• Process of Process

merge.mergeN
• A little weirder to use…

• Process of Process

• Uses a variable bounded queue

merge.mergeN
• A little weirder to use…

• Process of Process

• Uses a variable bounded queue

• Races all input streams

merge.mergeN
• A little weirder to use…

• Process of Process

• Uses a variable bounded queue

• Races all input streams

• Up to n at a time

merge.mergeN
• A little weirder to use…

• Process of Process

• Uses a variable bounded queue

• Races all input streams

• Up to n at a time

• Almost always what you really want

Chat Server
• Uses scalaz-netty project

Chat Server
• Uses scalaz-netty project

• Currently closed-source, but OSS soon™!

Chat Server
• Uses scalaz-netty project

• Currently closed-source, but OSS soon™!

• Would also work with scalaz-nio

Chat Server
• Uses scalaz-netty project

• Currently closed-source, but OSS soon™!

• Would also work with scalaz-nio

• Uses scodec

Chat Server
• Uses scalaz-netty project

• Currently closed-source, but OSS soon™!

• Would also work with scalaz-nio

• Uses scodec

• Use this. Use it. It's amazing.

Chat Server
• Uses scalaz-netty project

• Currently closed-source, but OSS soon™!

• Would also work with scalaz-nio

• Uses scodec

• Use this. Use it. It's amazing.

• Demonstrates the power of Process abstraction

Server
• Accept connections asynchronously

• …and in parallel!

Server
• Accept connections asynchronously

• …and in parallel!

• Pipe inbound data to a relay queue

Server
• Accept connections asynchronously

• …and in parallel!

• Pipe inbound data to a relay queue

• Pipe relay queue into the outbound channel

Server
• Accept connections asynchronously

• …and in parallel!

• Pipe inbound data to a relay queue

• Pipe relay queue into the outbound channel

• Continue until client closes connection

val address: InetSocketAddress = ???

val relay = async.topic[BitVector]

val handlers = Netty server address map { client =>
 for {
 Exchange(src, sink) <- client

 in = src to relay.publish
 out = relay.subscribe to sink

 _ <- in merge out
 } yield ()
}

val server: Task[Unit] = merge.mergeN(handlers).run

Client

• Establish connection

Client

• Establish connection

• Pipe standard input to the server (as UTF-8)

Client

• Establish connection

• Pipe standard input to the server (as UTF-8)

• Pipe server response to standard output

Client

• Establish connection

• Pipe standard input to the server (as UTF-8)

• Pipe server response to standard output

• Continue until user fail-sauce Ctrl-C kills us

implicit val codec: Codec[String] = utf8

def transcode(ex: Exchange[BitVector, BitVector]) = {
 val decoder = decode.many[String]
 val encoder = encode.many[String]

 val Exchange(src, sink) = ex

 val src2 = src flatMap decoder.decode
 val sink2 = sink pipeIn encoder.encoder

 Exchange(src2, sink2)
}

val clientP = for {
 rawData <- Netty connect address
 Exchange(src, sink) = transcode(rawData)

 in = src to io.stdOutLines
 out = io.stdInLines to sink

 _ <- in merge out
} yield ()

val client: Task[Unit] = clientP.run

Notes
• Resources are managed and cannot leak

Notes
• Resources are managed and cannot leak

• Logic is pure and encapsulated from networking

Notes
• Resources are managed and cannot leak

• Logic is pure and encapsulated from networking

• Backpressure "just works" (sort of)

Notes
• Resources are managed and cannot leak

• Logic is pure and encapsulated from networking

• Backpressure "just works" (sort of)

• Our Topic is unbounded, because I'm lazy

Notes
• Resources are managed and cannot leak

• Logic is pure and encapsulated from networking

• Backpressure "just works" (sort of)

• Our Topic is unbounded, because I'm lazy

• Handshaking would be almost trivial

Notes
• Resources are managed and cannot leak

• Logic is pure and encapsulated from networking

• Backpressure "just works" (sort of)

• Our Topic is unbounded, because I'm lazy

• Handshaking would be almost trivial

• Client and server logic looks almost the same!

• A different take on "reactive"

• A different take on "reactive"

• Purity helps us understand complex logic!

• A different take on "reactive"

• Purity helps us understand complex logic!

• No more puzzling about state or resource leaks

• A different take on "reactive"

• Purity helps us understand complex logic!

• No more puzzling about state or resource leaks

• Simple and easy combinators scale well

• A different take on "reactive"

• Purity helps us understand complex logic!

• No more puzzling about state or resource leaks

• Simple and easy combinators scale well

• You know almost everything you need

Questions?

